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A B S T R A C T

Due to the shortage of the conventional fossil fuels and air pollution from combustion, new, sustainable and
cleaner fuel resources are urgently required. Biodiesel has been introduced as a potential and alternative fuel for
years. Biodiesel can be produced from different sources such as vegetable oils, animal fat, waste oil, etc. All of
them are renewable and do not affect the food security. When biodiesel is used as a fuel resource for diesel
engines, the performance and emission characteristics such as brake thermal efficiency (BTE), brake specific
fuel consumption (BSFC) and brake power are almost maintained while hydrocarbons (HC), carbon monoxide
(CO), and particulate matter (PM) is decreased significantly. However, higher NOx concentration is observed.
This disadvantage of using biodiesel or biofuels in general is improved in recent years. The purpose of this work
is to do a comprehensive investigation of different approaches applying to biodiesel fueled engine like biodiesel
additives, exhaust gas recirculation (EGR), water injection (WI), emulsion technology (ET), injection strategy
modification, simultaneous technologies (ST), combustion chamber geometry modification and low temperature
combustion (LTC) mode. By the way, the impacts of these technologies on engine performance and emission
characteristics are summarized. Upon the comparison, using LTC mode is more efficient and feasible than the
others. It can reduce both NOx and PM emissions simultaneously by up to 95% and 98%, respectively, while
engine performance is slightly reduced. Looking inside the LTC mode, the most efficient model is the reactivity
controlled compression ignition (RCCI) combustion system. Applying RCCI combustion model might lead to the
increase of CO and HC emissions, but this issue can be easily solved by using some available technologies.

1. Introduction

In recent decades, total worldwide energy consumption has been
increased significantly. It leads to the global warming phenomenon
result in higher average temperature of the earth [1] and threatening
the energy security [2]. The rate of energy consumption will reach
about 53% by 2030 [3] as reported by IEA (International Energy
Agency). Thus the depletion of fossil fuels is appeared in clear vision in
the near future. In addition, emissions from burning petroleum-
derived fuels affected adversely both the environment and human
health [4,5]. To cope with this issue, almost every country in the world
released the emission legislations which are more and more stringent
[6]. For all of those reasons, the alternative, sustainable fuels that can
gradually replace the fossil fuels are urgently required. Among the

proposed alternative fuels for diesel engines, biodiesel was considered
as a reliable potential candidate.

Biodiesel fuels are formulated from animal fat and vegetable oil, which
are non-toxic and more bio degradable [7], eco-friendly and more reliable
[8]. Biodiesel is now widely accepted as a comparable fuel to fossil diesel
owing to its several favorable factors like availability, higher lubricity, and
lower exhaust emissions. Conversely, biodiesel fuel has some disadvantages
such as lower heating value, higher density, higher viscosity and higher
nitrogen oxides (NOx) emission compared to conventional diesel [9].
Regarding NOx emission, due to strict emission standards might lead to a
significant barrier to using biodiesel it is necessary to be concerned about
combustion and emissions of the diesel engine fueled with biodiesel. In the
literature, there are different approaches to improve diesel engine's
performance and emission when shifting to use biodiesel fuel.

http://dx.doi.org/10.1016/j.rser.2017.05.250
Received 19 April 2016; Received in revised form 6 May 2017; Accepted 26 May 2017

⁎ Corresponding author at: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
⁎⁎ Corresponding author at: Department of Mechanical Engineering, College of Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
E-mail addresses: ejiaqiang@126.com (J. E), minhhieu186@gmail.com (M. Pham), dan.zhao@canterbury.ac.nz (D. Zhao).

Renewable and Sustainable Energy Reviews 80 (2017) 620–647

1364-0321/ © 2017 Elsevier Ltd. All rights reserved.

MARK

Administrator PC
Highlight

http://www.sciencedirect.com/science/journal/13640321
http://www.elsevier.com/locate/rser
http://dx.doi.org/10.1016/j.rser.2017.05.250
http://dx.doi.org/10.1016/j.rser.2017.05.250
http://dx.doi.org/10.1016/j.rser.2017.05.250
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2017.05.250&domain=pdf


Sivalakshmi et al. [10] analyzed the impacts of biodiesel fuel on
NOx emission and their countermeasures. They concluded that using
biodiesel reduces the carbon monoxide (CO), hydrocarbon (HC) and
smoke emissions, but NOx increased. Similar reports have also been
presented by other researchers [11–13]. The common known mechan-
ism for the formation of NOx emission during combustion includes
thermal, prompt, and NNH mechanisms [12,14], in which the thermal

and prompt mechanisms are the most important ones in biodiesel
combustion [15]. Thermal NOx is originated from high local tempera-
ture due to excess hydrocarbon oxidation. Prompt NOx is produced by
the formation of free radicals in the front flame. It was reported that
NOx concentration was mainly affected by the prompt mechanism in
biodiesel combustion [16–18] (see Fig. 1).

Combustion and emission characteristics of diesel engine operated

Nomenclature

IEA International Energy Agency
HTC High Temperature Combustion
IMEP Indicating Mean Effective Pressure
CR Compression Ratio
DI Direct Injection
CI Compression Ignition
TC Turbocharged
LHR Low Heat Rejection
PM Particulate Matter
HC Hydrocarbon
CO Carbon Monoxide
BSFC Brake Specific Fuel Consumption
EAT Exhaust After-treatment
TDC Top Dead Center
PCCI Premixed Charge Compression Ignition
ATDC After Top-Dead-Center
EN14213 European Union Standards (Bio-Heating Fuels)
HCCI Homogeneous Charge Compression Ignition
BTE Brake Thermal Efficiency
SOI Start of Injection
CFD Computational Fluid Dynamics
NA Naturally Aspirated
LL Low Load
HL High Load
ml Medium Load
AC Air Cooled
WC Water Cooled
CS Constant Speed
DE Diesel Engine
CA Crank Angle
rpm Revolutions per minute
PAHs Polycyclic Aromatic Hydrocarbons
JB Jatropha Biodiesel
TOME Tall Oil Methyl Ester
KB Karanja Biodiesel
RB Rapeseed Biodiesel
WCB Waste Cooking Biodiesel
RCCI Reactivity Controlled Compression Ignition

CSB Cottonseed Biodiesel
SB Soybean Biodiesel
SFB Sunflower Biodiesel
COB Corn Oil Biodiesel
RBB Rice Bran Biodiesel
TPB Thevetia Peruviana Biodiesel
JOB Jojoba Biodiesel
MB Mahua Biodiesel
CB Colza Biodiesel
PKB Palm Kernel Biodiesel
COME Castor Oil Methyl Ester
CnB Canola Biodiesel
FOB Fish Oil Biodiesel
BTDC Before Top-Dead-Center
AASTM D6751 ASTM D6751-01 American Society for Testing and

Materials (Biodiesel Standards), USA
EN 14213 European Union Standards (Biodiesel)
DPPD N,N′-diphenyl-1,4-phenylenediamine
ODA Octylated Diphenylamine
PPDA p-phenylenediamine
BHT Butylated hydroxytoluene
EDA Ethylenediamine
NPAA 4-nonyl phenoxy acetic acid
DEE Diethyl Ether
EHN 2-ethyl-hexyl nitrate
DMC Dimethyl Carbonate
TCC Toroidal Combustion Chamber
SCC Shallow Depth Combustion Chamber
HCC Hemispherical Combustion Chamber
UBHC Unburn Hydrocarbon
FAAE Fatty Acid Alkyl Esters
TBHQ Tert-butylhydroquinone
MBEBP 2,2′-methylenebis (4-methyl-6-tert-butyphenol)
PHC Pyridoxine Hydro Chloride
DEA Di-Ethyl Amine
TPB Thevetia Peruviana Biodiesel
LOME Linseed Oil Methyl Ester
PME Palm Methyl Ester
H50 50% Honne oil

Fig. 1. NOx emission trends prediction testing [16–18].
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using biodiesel and its blend were also investigated by many experts
and authors. Sharanappa et al. [19] studied the effect of blend ratio of
mahua oil in biodiesel on engine's performance and emission. They
found that the higher mahua oil ratio in the blend, the lower HC and
CO emissions, higher brake specific fuel consumption (BSFC) and
higher NOx emission. Similar results were reported by Rao et al. [20]
when they used rice bran oil biodiesel. In addition, the authors found
that soot was reduced when the engine operated with biodiesel. Other
researchers [21–23] also reported that using biodiesel as engine fuel
will lead to higher BSFC and NOx emission comparing to using fossil
diesel fuel. To improve fuel consumption and emissions, there have
been some different techniques applied.

The most common techniques have been applied include the
modification of fuel properties, engine design alteration, and exhaust
gas treatment. The intention of the fuel properties modification is to
enhance the mixture formation and combustion processes without any
engine modification. In this way, some different additives including
metal based additives, antioxidants and oxygenated additives, cold flow
improver, etc. were used with biodiesel [24,25]. It is well known that
biodiesel has a high viscosity so these additives could solve the problem
of cold flow properties for their large number of usage in diesel engines.
In other cases, some additives were applied to improve the engine
performance and exhaust emissions as fueling with biodiesel.

The effects of ethanol as oxygenated additive to biodiesel was
studied by Gvidonas et al. [26]. They found that adding ethanol to
biodiesel fuel reduced the NOx and the HC emission for richer
combustible mixtures. Besides that, the influence of a higher ethanol
mass content on CO and PM emissions depends on the air-fuel ratio
and engine speed. In another research, Balaji and Cheralathan [27]
investigated the effects of antioxidant additives (L-ascorbic) with
cottonseed methyl ester on engine performance and emission char-
acteristics. It was concluded that BSFC slightly decreased, HC, NOx,
CO2, and smoke emission decreased, but brake thermal efficiency
(BTE) and CO emission increased. For metal based additives, Keskin
et al. [28] investigated the influences of tall oil biodiesel with
magnesium (Mg) and molybdenum (Mo) based fuel additives on diesel
engine performance and emissions. It was indicated that CO emission
and smoke opacity was decreased by 56.42% and by 30.43%, respec-
tively. However, lower NOx and CO2 emissions were recorded in case of
engine fueling with the biodiesel without additives.

On the other hand, the fuel properties like viscosity, density, and
surface tension of biodiesel have much more affects to the fuel
vaporization and atomization than those of diesel fuel as reported by
Allen et al. [29,30]. The improvement of the spray atomization in the
compression ignition process of the diesel engine fueled with biodiesel
still had some problems about uncertainties. Biodiesel fuel has the
higher kinematic viscosity and surface tension which cause a higher
droplet size, leading to the difficult vaporization and atomization. Lee

et al. [31] reported that the atomization of biodiesel blends was worse
than that of diesel fuel.

As mentioned above, when a diesel engine was operated with
biodiesel blends, NOx emission was increased while HC and CO
emissions were decreased [32]. In order to improve NOx-soot trade-
off, there are several ways such as changing fuel injection strategies,
using additives, exhaust gas recirculation (EGR) [33,34] and so on. In
terms of less engine modifications, reducing emissions and improving
performance inside combustion chamber are advantageous [35,36].
However, fuel injection strategies like injection timing, injection
pressure and injection rate shaping were also applied.

Regarding fuel injection strategies, Jaichandar et al. [37] studied
the improved air motion in Trapezoidal Combustion Chamber (TRCC)
and Toroidal Combustion Chamber (TCC). It was showed that combus-
tion chamber geometry improved the mixture formation resulting in
increased brake thermal efficiency substantially and lowered specific
fuel consumption. In another work, Saito et al. [38] also reported that
using a re-entrant chamber can reduce ignition lag and provide better
fuel economy with delayed injection timing compared to using con-
ventional chambers. The effects of injection timing on direct injection
(DI) diesel engine powered by waste plastic oil were investigated by
Mani et al. [39]. They stated that when applying retarded injection
timing, NOx concentration decreased, CO emission were decreased by
25%, and unburned hydrocarbons (UBHC) emission were decreased by
30%, while smoke was increased by 35% at all loads. Concerning the
effects of injection pressure, Hountalas et al. [40] reported that higher
injection pressure as the engine speed and load reduced resulting in
proper atomization, good mixing of fuel with air, and finally led to
complete combustion [41,42].

In summary, the important point to use biodiesel fuel more
effectively is that engine performance and emission characteristics
should be improved. As reported, with the increasingly strict emission
standards all around the world, the exhaust emission from vehicles
should be reduced deeply (see Fig. 2). Fig. 2 expresses the European
Union Emission Standards (Euro III, IV, V and VI) as an example. It is
very obvious that NOx and PM emissions are seriously controlled and
dropped following new standards. Thus, to meet both targets of engine
performance and emission standards simultaneously, many different
technologies must be applied, especially in the engine fueling with
alternative fuel such as biodiesel. In the literature, there are only few
works considering the impacts of using these technologies on the
combustion. To fill this gap, we have conducted the comprehensive
review of different technologies affecting the combustion and emissions
of the diesel engine fueled with biodiesel.

This paper presents a comprehensive review of the impact of
different technologies on combustion and exhaust emissions including
details of engine and operating condition. The main aim of this work is
to provide information to the engineers, industrialists and researchers
who are interested in biodiesel and to emphasize the application of
RCCI combustion mode as a promising technology in biodiesel engines
to utilize the advantages of biodiesel. A large number of literatures
from highly rated journals in scientific indexes are reviewed including
the most recent publications.

2. Cost-benefit analysis of biofuel

Biofuel has been recommended to substitute the traditional fossil
energies as studied in many literatures and motivated in many
countries due to gaining economic value and having less negative
effects on the environment; however, there are still concerns about its
economic viability. According to Larson [44,45], because of their
manufacture characteristics, commercial biofuels used predominantly
feedstock produced from food crops such as sugar cane, sugar beet, and
oily seed. However, rapid fast progress in biofuel production will affect
directly to global food price increases and this will have a problem of
food security, especially in poor and developing country. According to
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Fig. 2. EU Emission Standards for Passenger Cars [43].
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the studies [45–48], biofuels have been partially assigned responsi-
bility for the food price increment in the years from 2003 to 2008.
Some other studies [49–51] also showed that the increment of food
price in the last decades has been explained as the biofuels production
expansion effects, which reduced the food supply availability at the
international market and increased food prices. Fig. 3 describes the
high fluctuation of the prices of some types of feedstock in the period
from 1996 to 2009 [49,52].

Generally, in the first period, these commodity prices decreased and
reached a trough in 2000. It can be explained that the world energy
demand had been increased in this period, but biofuels production
made from feedstock types was not developed. However, after the year
of 2000 feedstock prices increased dramatically, especially rapeseed
and soybean oil, and reached the highest prices in 2008. From 2009, all
feedstock prices have decreased due to the decrement of crude oil price.
Oil price increases impact feedstock prices because of transportation,
farming and food distribution costs; in addition the price of fertilizer
also directly affects to the prices.

It is clearly observed that the price of feedstock plays an important
role in the biofuel production and biofuel cost. To make biofuels
competitive with fossil fuels, many countries have been implemented
subsidies in order to reduce the biofuel prices [53–55]. Some studies
conducted biofuels from an economic perspective and evaluated biofuel
promotion in the context of the policy's multiple objectives, life-cycle
implications other unintended consequences [55–58]; however, com-
parisons of cost-effectiveness between biofuels and fossil fuels have not
yet been investigated properly. As mentioned in [59–61] numerous
economic factors relate to the biofuel production, such as capital cost,
process technology, feedstock material cost and chemical cost. Among
them, the cost accounting for 80% of the total cost has been considered
to be the major economic factor; meanwhile, the labour costs, methanol
and catalyst are also significant in the biofuel production. To compare
the social costs of biofuels and fossil fuels, Loan et al. [62] conduced a
case study of Vietnam in detail. They compared the biofuels and fossil
fuel prices for a functional unit defined as 1 km of vehicle transporta-
tion. This research conducted two biofuels (ethanol and biodiesel) and
respectively their alternative fossil fuels, including gasoline, diesel with
a focus on the blends of E5 (5% ethanol blended) and E10 (10%
ethanol blended) for ethanol, and B5 (5% biodiesel blended) and B10
(10% biodiesel blended) for biodiesel as shown in Tables 1–3.

The fuel costs are calculated as the break-even price which is
determined by setting the net present values of fuel projects equal to
zero at a given discount rate. Generally, the social costs of ethanol and
biodiesel are respectively higher than those of gasoline because of
higher private cost components when comparing in term of per MJ.
However, if we consider the fuel efficiency in transportation, the
ethanol substitution for gasoline in the form of E5 and E10 saves
0.02 $/km, corresponding to 33.4% of social cost per km of vehicle
movement compared to gasoline if the fuel consumption of E5 and
E10, in terms of L/km is equal to the fuel consumption of gasoline. The
lower fuel consumption of E5 and E10 in comparison with that of
gasoline results in a higher achievement of this saving. For the cost
effectiveness of biodiesel, the biodiesel substitution would be cost-
effective if the fuel consumption of B5 and B10, in terms of L km/1 in
comparison with that of diesel, would reduce by more than 1.4% and
2.8% for B5 and B10 respectively.

3. The using of biodiesel

It is known that engine emissions from combustion of petroleum
derived fuel affected seriously to environment and human health.
Global warming is increasing due to the greenhouse gases including
methane, nitrogen oxides and carbon dioxides. Liaquat et al. [63]
stated that as the average global temperature increased, ice at the poles
would melt, seawater level would increase, many lands would be
flooded, about hundreds of millions of people would lose their lives.

Many researchers have demonstrated that carbon monoxide (CO),
hydrocarbon (HC), formaldehyde (HCHO), nitrogen oxides (NOx),
particulate matter (PM) and organic gases other than methane (Non-
Methane Organic Gases -NMOG) which are emitted from internal
combustion engines as harmful to the human health and environment.
The impact of exhaust emissions on human health is showed in Table 4
[64–67].

Apart from the impacts on the environment and humans, the
commercial use of biodiesel has been limited due to some downsides
relating to the steady state during the storage and use over time, the
balance between the cots-benefits of using biodiesel with fossil fuel,
between biodiesel production and prices of food from which biodiesel is
made, between the use of land and water to grow crops used for food
and biodiesel [68]. When these obstacles can be overcome by the
application of various technical measures, biodiesel is truly a fuel of the
future.

The stability of biodiesel is influenced by many factors. Biodiesel is
highly sensitive to light, temperature [69], more susceptible to oxida-
tion reactions [70–72], more hygroscopic in nature [70], and more
corrosive than diesel [73,74]. These factors are the cause to the
degradation of biodiesel due to compositional changes. Exposure to
air [75,76], sunlight, exposed metal surfaces, sometimes changing the
storage container [77], temperature [78] affect the storage stability of
biodiesel. After 6-months, it loses its stability and therefore it cannot be
used. Temperature also plays an important role on the deterioration of
the biodiesel quality. When increasing temperature enhances the
oxygenated molecules and thereby improves the lubricity [78], oxida-
tion at elevated temperature may produce different products such as
aldehydes, ketones, carboxylic acids, etc. In cold climate conditions
[79,80], the biodiesel fuel turns into a cloud of wax crystals. These
formed crystals affect the conditional operation of the engine because
they cause problems such as plugging the fuel lines and filter [72]. This
is a barrier for countries with cold climates when using biodiesel. It is
clear that the state of biodiesel changes over time like a living
substance. To ensure the steady state during the storage and use over
time a number of methods can be applied such as the use of proper
additives and modification of storage condition, in which uses the
additive is a method being applied efficiently. A few additives have been
used to improve the oxidation stability, reduce the corrosiveness and
some other additives used to enhance other fuel properties.

Besides, it is necessary to build a book of standards covering the
production, use and storage of each type of biodiesel, and environ-
mental standards when using this fuel for each country with different
climate to minimize the disadvantages caused by using biodiesel. The
European standard EN 14214 is went into effect in 2003. This standard
is applied in the following member countries: Austria, Belgium, Cyprus,

Fig. 3. Crude oil price and feedstock prices in the period from 1996 to 2009 [49,52].
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Czech Republic, Denmark, Finland, France, Estonia, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxemburg, Malta,
the Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain,
Sweden, Switzerland, and the United Kingdom. The European standard
EN 590 for conventional diesel fuel contains a provision that conven-
tional diesel fuel can contain up to 5% FAME meeting the standard EN
14214. For low-temperature properties, national standardizing com-
mittees are given the option of selecting among six CFPP (cold-filter
plugging point; method EN 116) classes for moderate climates and five
for arctic climates. The total temperature range for these CFPP classes
is from +5 °C to –44 °C [81]. For the other countries like Turkey, India,

Malaysia, etc. the biodiesel standards basically based on the standard
ASTM D6751 from the US. Some amendments may be added to adapt
with the local conditions.

Processes of biodiesel demand a lot of energy and materials [68].
There has also been concerned on land sources for biodiesel and food
crops when the global food security is not stable. Selection of material
sources and catalyst can reduce the total investment cost by 25%.
Among materials for processing biodiesel, non-edible and waste oils is
feasible as they do not impact the food sources and they are diversified,
which include algal oil, microalgae, jatropha and grease. These sources
cut the expenditures by 60–90% [82]. Besides, the use of non-edible

Table 1
Costs of production and utilization of ethanol, gasoline, biodiesel and diesel ($/GJ).

Cost items Ethanol Gasoline Biodiesel Diesel

Discount rate Discount rate Discount rate Discount rate

4% 8% 10% 4% 8% 10% 4% 8% 10% 4% 8% 10%

Private cost 18.57 20.13 20.93 15.78 15.78 15.79 29.2 30.64 31.4 14.91 14.91 14.91
- Cassava production 10.76 11.24 11.48 28.41 28.86 29.11
- Ethanol conversion 7.33 8.37 8.91 0.5 1.47 1.96
- Distribution and blending 0.48 0.52 0.53 0.29 0.31 0.32
External cost 1.63 1.7 1.74 4.11 4.12 4.13 −2.19 −2.24 −2.26 4.21 4.24 4.26
- GHG emissions 1.22 1.29 1.33 2.76 2.76 2.76 −2.58 −2.65 −2.69 2.76 2.76 2.76
- Non-GHG emissions 0.4 0.41 0.41 0.25 0.26 0.26 0.4 0.42 0.43 0.46 0.49 0.5
- Security of supply NAa NAa NAa 1.1 1.1 1.1 NAa NAa NAa 0.99 0.99 0.99
Social cost 20.2 21.83 22.67 19.89 19.9 19.91 27.02 28.41 29.14 19.12 19.15 19.17

a Not applied.

Table 2
Cost-effectiveness of ethanol and gasoline.

Scenarios Social cost Fuel efficency Social cost ($ /km) Cost difference

($/GJ) (GJ/km) Ethanol Gasoline ($/km) (%)
(1) (2)a (3)= (1×(2) (4)= (1)× (2) (5)= (3)- (4) (6)= (5)×100/ (4)

for ethanol for gasoline

At the discount rate of 4%
Gasoline 19.89 0.0026 0.05

Ethanol
- S1 (E5, 5%) 20.2 0.0353 0.71 0.05 0.66 1298.53
- S2 (E5, 0%) 20.2 0.0017 0.03 0.05 −0.02 −33.4
- S3 (E5, −5%) 20.2 0.0008 0.02 0.05 −0.03 −67.56
- S4 (E10, 5%) 20.2 0.0032 0.06 0.05 0.01 27.14
- S5 (E10, 0%) 20.2 0.0017 0.03 0.05 −0.02 −33.4
- S6 (E10, −5%) 20.2 0.0011 0.02 0.05 −0.03 −5637

At the discount rate of 8%
Gasoline 19.9 0.0026 0.05

Ethanol
- S1 (E5, 5%) 21.83 0.0353 0.77 0.05 0.72 1410.55
- S2 (E5, 0%) 21.83 0.0017 0.04 0.05 −0.01 −28.07
- S3 (E5, −5%) 21.83 0.0008 0.02 0.05 −0.03 −64.96
- S4 (E10, 5%) 21.83 0.0032 0.07 0.05 0.02 37.23
- S5 (E10, 0%) 21.83 0.0017 0.04 0.05 −0.01 −28.07
- S6 (E10, −5%) 21.83 0.0011 0.02 0.05 −0.03 −52.87

At the discount rate of 10%
Gasoline 19.91 0.0026 0.05

Ethanol
- S1 (E5, 5%) 22.67 0.0353 0.8 0.05 0.75 1468.3
- S2 (E5, 0%) 22.67 0.0017 0.04 0.05 −0.01 −25.32
- S3 (E5, −5%) 22.67 0.0008 0.02 0.05 −0.03 −63.62
- S4 (E10, 5%) 22.67 0.0032 0.07 0.05 0.02 42.57
- S5 (E10, 0%) 22.67 0.0017 0.04 0.05 −0.01 −25.32
- S6 (E10, −5%) 22.67 0.0011 0.02 0.05 −0.03 −51.07

b A minus sign means cost-effectiveness.
a These are the figures in the column 8 in Table 3 divided by 1000.
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Table 3
Cost-effectiveness of biodiesel and diesel.

Scenarios Social cost Fuel efficency Social cost ($/km) Cost difference

($/GJ) (GJ/km) Biodiesel Diesel ($/km) (%)
(1) (2)a (3)= (1)× (2) (4)= (1)× (2) (5)= (3)- (4) (6)= (5)×100: (4)

At the discount rate of 4%
Diesel 19.12 0.0019 0.04

Biodiesel
- S7 (B5, 0%) 27.02 0.0018 0.05 0.04 0.01b 28.58
- S8 (B5, +5%) 27.02 0.0370 1.00 0.04 0.96c 2600.22
- S9 (B10, 0%) 27.02 0.0018 0.05 0.04 0.01 28.58
- S10 (B10, +5%) 27.02 0.0034 0.09 0.04 0.05 145.47

At the discount rate of 8%
Diesel 19.15 0.0019 0.04

Biodiesel
- S7 (B5, 0%) 28.41 0.0018 0.05 0.04 0.01 34.98
- S8 (B5, +5%) 28.41 0.0370 1.05 0.04 1.01 2734.64
- S9 (B10, 0%) 28.41 0.0018 0.05 0.04 0.01 34.98
- S10 (B10, +5%) 28.41 0.0034 0.10 0.04 0.06 157.69

At the discount rate of 10%
Diesel 19.17 0.0019 0.04 0.04

Biodiesel
- S7 (B5, 0%) 29.14 0.0018 0.05 0.04 0.01 38.31
- S8 (B5, +5%) 29.14 0.0370 1.08 0.04 1.04 2804.43
- S9 (B10, 0%) 29.14 0.0018 0.05 0.04 0.01 38.31
- S10 (B10, +5%) 29.14 0.0034 0.10 0.04 0.06 164.04

a These are the figure in the column 8 in Table 3 divided by 1000.
b A plus sign means cost- ineffectiveness.
c The high cost- ineffective in S8 due to low contribution of biodiesel to the blend B5.

Table 4
Impact of engine exhaust on human health.

Exhaust emissions Impact on health Refs

PM Aggravated asthma, bronchitis, emphysema, decreased lung function, weakening of the heart, heart attacks, premature death, Lung cancer and
cardiopulmonary deaths, coughing and difficult or painful breathing

[64]

NOx Bronchitis and pneumonia, irritate the lungs and cause oedema; and sensitivity to dust and pollen in asthmatics [65]
CO Promote morbidity in people with respiratory or circulatory problems, grow thing fetal in pregnant women and tissue development of young children [65]
HC Eye irritation, coughing and sneezing, drowsiness and symptoms akin to drunkenness. Some hydrocarbons have a close affinity for diesel particulates

and may contribute to lung disease
[65]

PAHs Eye and nose irritation, coughing, nausea and shortness of breath [66]
Formaldehyde Eye and nose irritation, coughing, nausea and shortness of breath [67]

Table 5
Classification on different biodiesel feedstock sources.

Group Sources of oil

Vegetable oil Edible vegetable oil: sunflower, rapeseed, rice bran, soybean, coconut, corn, palm, olive, pistachia palestine, sesame seed, peanut, opium poppy, safflower,
mustard, castor, false flax (Camelina sativa), egusi (Citrullus colocynthis L.), sugar apple seed (Annona squamosa), tigernut, radish, ramtil (Guizotia abyssinica)
oil, etc.
Non-edible vegetable oil: jatropha, karanjaor pongamia, yellow Oleander (Thevettia peruviana), neem, moringa peregrina seed, jojoba, cottonseed, linseed,
mahua, deccan hemp, kusum, orange, rubber seed, Aphanamixis polystachya, Schleichera oleosa L., sea mango (Cerbera odollam), polanga (Calophyllum
inophyllum L.), tobacco (Nicotiana tabacum), hochst (Crambe abyssinica), nahor, milk bush (Euphorbia tirucalli), soapnut (Sapindus mukorossi), Acrocomia
aculeata (macaúba) oil sea mango, hodgsonia macrocarpa seed, silk cotton oil tree (Ceiba pentandra), pongamia, hemp (Cannabis sativa Linn), Guizotia
abyssinica L, macauba coconut (Acrocomia aculeata), Moringa oleifera, croton megalocarpus, Pangium edule Reinw, paradise, Thespesia populnea seed, algae,
halophytes etc.

Animal fats Tallow, yellow grease, chicken fat, by-products from fish, animal fats, poultry fat, mucor circinelloides, pig fat, beef tallow oil etc.
Waste oil Waste salmon, moroccan waste frying, animal fat wastes or recycled cooking oil
Algae Microalgae, spirulina platensis algae

J. E et al. Renewable and Sustainable Energy Reviews 80 (2017) 620–647

625



oils has many advantages such as cheap prices, daily quantity of up to
millions of tons, creating opportunities for farmers and environment,
and being environment-friendly [83]. Among those sources, algae is a
potential material for biodiesel as the oil content seems to be 100 times
higher than the other available sources. Algae yields were reported to
be 5000 gallons per acre while other vegetable oil was less than 1000
gallons per acre [84].

Compared to other alternative energy sources, biodiesel is a
potential fuel that meets the demands on energy and environment-
friendliness. In different climates, the use of biodiesel needs to pay
attention to a variety of factors such as mixing ratio, types of additives
and corresponding ratio, storage conditions, fuel standards and using
cautions as well.

4. Biodiesel production and its properties

4.1. Biodiesel production

Biodiesel is produced from animal fat and vegetable oils through
the chemical reactions and processes. The feedstocks for biodiesel
production are primarily categorized into four main groups [85], as
shown in Table 5.

There are several generally accepted technologies for production of
biodiesel from different feedstocks such as transesterification, micro-
emulsification, direct use and blending of oils, pyrolysis.

4.1.1. Transesterification
Transesterification of oils (triglycerides) with alcohol is the most

advanced and promising technology of biodiesel production, so called
fatty acid alkyl esters (FAAE). The transesterification reaction is
occurred between the triglyceride present in the oil or fat and methanol
or ethanol in the presence of a catalyst such as sodium or potassium
hydroxide. The result from this reaction is glycerol (also called glycerin)
[86]. The overall reaction of the transesterification process is shown in
Fig. 4 according to Abbaszaadeh et al. [87].

The catalysts are used to enhance the reaction rate and to shorten
reaction time. Transesterification process is also influenced by other
parameters like concentration of catalyst, mixing intensity, reaction
temperature, reaction time, reaction pressure, ratio of alcohol to oil and
kind of feedstock.

4.1.2. Micro-emulsification
Microemulsion is defined as a colloidal equilibrium dispersion of

optically isotropic fluid microstructures with dimensions generally in
the 1–150 nm range. It is formed spontaneously from two normally
immiscible liquids and one or more ionic or non-ionic [88].
Microemulsions have three components, namely an oil phase, an
aqueous phase and a surfactant. In addition, some solvents such as
methanol, ethanol should be used in order to satisfy the maximum
viscosity limitation for diesel engines [86].

4.1.3. Direct use and blending of oils
The direct use of biodiesel as a fuel is inappropriate because after a

long operation there will be coking formation on the injectors, carbon
deposits, oil ring sticking and thickening of the lubricant [88].
However, mixing crude vegetable oils with diesel fuel can solve the
problems of high viscosity in compression ignition (CI) engine. Besides,
preheating vegetable oils also decreases the viscosity, improves the
atomization and mixing process, which results in better combustion
[89]. Regarding this issue, Adams et al. [90] used a six-cylinder, direct
injection, turbocharged engine for a total of 600 running hours to test
the mixtures of degummed soybean oil and diesel fuel in the ratios of
1:2 and 1:1. The results showed that the lubricating oil thickening and
potential gelling existed in case of the 1:1 blend, but it did not occur in
case of the 1:2 blend. The authors suggested that the 1:2 blend ratio
may be a suitable fuel for agricultural equipment without major

modification. Further study is needed on the long term effect on
engine, though.

4.1.4. Pyrolysis
Heating or with the aid of catalyst in the absence of oxygen to

convert one substance into another is called pyrolysis [91]. The
pyrolysis process is simple, wasteless, pollution free and effective
compared to other cracking processes. The pyrolysed materials can
be vegetable oils, animal fats, natural fatty acids, wood, bio-waste and
methyl esters of fatty acids [92]. This method was used in many
research works to get biodiesel using for diesel engines [92–96].

4.2. Properties of biodiesel

The thermo-physical properties of biodiesel effect on engine
performance and emission characteristics. Normally, major considered
properties of biodiesel are viscosity, density, cetane number, calorific
value, flash point, pour point, etc. In the literature, some researchers
stated that fatty acid contents and chemical compositions of biodiesel
have important influences on properties of biodiesel [97]. Hence
biodiesel is mandatory to measure its properties as specified by
ASTM D6751 and EN 14214 standards, the most common standards
for biodiesel using as a fuel for CI engine. Table 6 showed different
properties of biodiesel produced from various sources [98]. From this
table, it can be said that the properties of biodiesel are similar to those
of petro-diesel.

Viscosity of biodiesel is the most important parameter to be
checked because it directly affects on the injection system of the
engine. In general, the higher viscosity makes poorer fuel atomization,
incomplete combustion and higher emissions [72,99]. For fuel atomi-
zation, high viscosity causes large droplet sizes, poor vaporization,
increased oil dilution, narrow injection spray angle, and greater in-
cylinder penetration of the fuel spray [100–104].

Cetane number is another important parameter impacting on
combustion quality. The higher cetane number, the shorter ignition
delays, which finally increases the combustion duration. The cetane
number of biodiesel is higher than that of petro-diesel due to its longer
fatty acid carbon chains [127–129].

Flash point of a fuel is the temperature at which it will ignite when
exposed to a flame or a spark. The flash point of biodiesel is higher than
the prescribed limit of fossil diesel, so it is safe for transport, handling
and storage [130–133]. Flash point is influenced by several factors
such as residual alcohol content, the number of double bonds, number
of carbon atoms, and so on [134].

Calorific value indicates the energy content of a fuel [135]. Biodiesel
has lower mass energy value than petroleum diesel due to its high
oxygen content. With higher density and lower heating value, the
power output and the torque of the engine fueling with biodiesel are
lower than those of petro-diesel as reported by Jain et al. [86].

Biodiesel from all of the difference feedstocks is generally regarded
as having excellent lubricity with a very small amount of sulfur content.
Therefore, the wear of engine parts and injection system is reduced.
Moreover, the emission of oxides of sulfur (SOx) is almost negligible
[136].

CH2OCOR1

CHOCOR2

CH2OCOR3

CH2O

CHOH

CH2OH

R1COOR

R2COOR

R3COOR

Triglycerides Alcohol Triglycerine

3ROH+ +

Fig. 4. Transesterification reaction [87].
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Besides, average fatty acid profile have significantly impacts on the
physical/chemical properties of biodiesel [137]. The fuel properties of
biodiesel are strongly influenced by the properties of the individual
fatty acid methyl esters in biodiesel. Both the fatty acid and alcohol can
have considerable influence on fuel properties as cetane number with
relation between combustion and exhaust emissions, cold flow, oxida-
tive stability, viscosity and lubricity [138,139]. Jiaqiang et al. [140,141]
found that the higher saturation level could shorten the chemical
ignition delay time, but the higher saturation contents would increase
the kinetic viscosity, resulting in the poor fuel–air mixing and
evaporation process.

Fig. 5 shows the indicated power of the engine operated with four
typical biodiesels at different load conditions. In which, the engine
fueled with sunflower biodiesel had a better performance than the
others in all tests. This can be explained that sunflower biodiesel the
largest C18:2 with a lower kinetic viscosity, hence the evaporation and
combustion are improved [140]. Lower kinetic viscosity methyl esters
was favorable for better fuel–air mixing and subsequent combustion,
however, NOx emission was increased [97,142].

Table 7 shows average fatty acid profile for different feedstocks for
biodiesel fuel.

5. Effect of different techniques on combustion and
emissions of the engine using biodiesel fuels

5.1. Pre-combustion techniques

5.1.1. Use of different fuel additives
Fuel additives are the chemicals that mixed with fuels in order to

improve the efficiency and fuel economy. The selection of additives for
biodiesel fuel depends on the fuel blending property, economic
feasibility, additive solubility, toxicity, viscosity of the fuel blend, flash
point of the fuel blend, solubility of the water in the blend and water
partitioning of the additive. There have been many researchers used
different additives for biodiesel such as metal based additives
[151,152], oxygenated additives (dimethyl ether, ethanol, methanol)
[153–155], antioxidants [156,157], cetane number improvers
[158,159].

Kannan et al. [160] investigated the influences of ferric chloride
(FeCl3) additive on performance, emission and combustion character-
istics of a DI diesel engine operated at 1500 rpm, fueled with waste
cooking palm oil based biodiesel. The authors concluded that this
metallic additive had an effect of decreasing the brake specific fuel
consumption (BSFC) of 8.6% at an optimum operating condition
(280 bar injection pressure, 25.5° BTDC injection timing). In another
research, Gürü et al. [152] studied the effect of the synthetic Mg additive
on the performance and emission of a single-cylinder, DI diesel engine.
The diesel fuel (EN 590) and a blend of 10% chicken fat biodiesel and
diesel fuel (B10) were used. The engine was operated at full load and
speed range from 1800 to 3000 rpm. The results indicated that the
engine torque did not change significantly, while the specific fuel
consumption increased by 5.2%. In a similar work, Kalam et al. [157]
investigated the effect of NPAA additives added in biodiesel fuel blends
on the performance and emission of an indirect injection, naturally
aspirated, four stroke, four cylinder and water cooled diesel engine. The
authors revealed that B20 fuel with 1% NPAA additives gave 2.7% higher
brake power and 5% lower brake specific fuel consumption than pure
B20 due to lower viscosity and combustion quality of additives.

Table 6
Properties of biodiesel produced from different feedstocks.

Fuel Density (kg/
m3)

Kinematic viscosity at
40 °C (mm2/s)

Cetane no. Heating value
(MJ/kg)

Cloud point
(°C)

Flash point
(°C)

Fire point
(°C)

Pour point
(°C)

Refs.

Diesel 850 2.44–2.60 47–50 42–44.3 – 68–75 80 −20 [105–108]
Camelina 918 24 50.4 38 3 > 220 – −7 [109]
Coconut 877 3.18 60 36.98 1 136.5 – −4 [109]
Safflower 920 26.64 51.1 – −4 174 – −7 [93]
Canola 872 4.22 53.7 39.289 −4 153 – −6 [110]
Mahua 880–916 3.98–5.72 – 37–39.4 – 129–208 141 6 [105,111,112]
Karanja 880–890 4.37–9.6 48–58 36.12–42.13 −2–14.6 170–205 – −6–5.1 [106,113,114] and [115–

117]
Palm 870–878.4 4.5–5.11 50–62 37.2–39.91 14 173 182 8 [107,115,118]
Cotton seed 850–885 6–9.6 52 37.5–41.68 −2 – – −4 [115,119]
Jatropa 873 4.23 – 42.673 10.2 148 – 4.2 [120]
Polanga 869 3.99 – 41.397 13.2 140 – 4.3 [114]
Soybean 885–914 4.057–39.5 37–51.3 37.3–39.66 – 69–163 – – [115,118,121,122]
Sunflower 880–885.6 4.381–4.4 50–51.6 37.5–39.95 – 183 – – [115,118]
Rapeseed 872–885 4.585–11 37.6–54.5 37.3–39.9 – 177–275 – – [115,121,123]
Honge 890 5.6 45 36.01 – 163 – – [124]
Peanut 886.4 5.251 54 39.7 – 193 – – [118]
Corn 885.8 4.363 55.4 39.87 – 167 – – [118]
Palm Kernel 876.6 3.248 62.1 38.53 – 131 – – [118]
Tallow 832 4.89 58.9 37.2 13 124 – 10 [125]
Waste Fried 884.2 4.869 55 39.68 – 167 – – [118]
Jojoba 866 19.2 63.5 43.38 – 61 – – [108]
Neem 820 8.8 51 40.1 – – – – [126]
Chicken fat 869 2.8 48 – −7 74 – – [85]
Mutton fat 856 8.15 59 – −4 – – −5 [85]

Fig. 5. Indicated power by one-cylinder engine operated with four typical biodiesels
[140].
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The operating conditions of engine as speed, load, injection
pressure and timing also exert impacts on the fuel consumption of an
engine fueled with biodiesel. Many researchers have studied the effect
of additives on the fuel consumption of engine fueled with biodiesel.
Palash et al. [161] studied the effect of jatropha biodiesel fuel with
N,N′-diphenyl-1,4-phenylenediamine (DPPD) on the engine perfor-
mance and emission of a compression ignition diesel engine at different
engine speeds and they found that the BSFC was decreased by 1.86%
compared to Jatropha biodiesel fuel (B10).

The effects of additives on the bake thermal efficiency of a diesel
engine fueled with biodiesel are studied. Kannan et al. [160] investi-
gated the influences of the waste cooking palm oil with ferric chloride
(FeCl3) additive on the performance, emission and combustion char-
acteristics of a direct injection diesel engine at different operating
conditions and they found that BTE increased by 3.1% compared to
biodiesel fuel. Gürü et al. [152] studied the effect of the synthetic Mg
additive added in biodiesel fuel blends on diesel and stated that the
bake thermal efficiency of biodiesel fuel decreased by 4.8% compared to
biodiesel without additive. Subbaiah and Gopal [162] reported that
BTE of the rice bran oil biodiesel (RBD) with enthanol increased by
3.93% higher than biodiesel fuel.

Mainly two oxides of nitrogen, namely, nitric oxide (NO) and
nitrogen dioxide (NO2) are formed due to the oxidation of nitrogen
present in the intake air during the combustion process. NOx is the
most dreadful emission from the compression ignition. NOx formation
mostly depends on the combustion temperature, the oxygen concen-
tration and residence time for the reaction to take place and the
equivalence ratio [163]. Many researchers found that NOx emission
increased when using biofuel blends [164–167]. Higher cetane number
of biodiesel fuel leads to a shorter ignition delay time and therefore
NOx formation rate was lower [168,169]. In addition, a very important
reason for increasing NOx by using biodiesel fuel relates to faster burn
rate as well as advanced start of combustion, low radiation heat
transfer, variable adiabatic flame temperature, concentration oxygen
(O2) of biodiesel fuel [170]. A few additives such as metal based
additives, oxygenated additives and cetane improver additives were
used to reduce NOx emission. Kannan et al. [160] investigated the
influences of waste cooking palm oil with ferric chloride (FeCl3)
additive on performance, emission and combustion characteristics of
a direct injection diesel engine at different operating conditions. The
authors found that the use of FeCl3 increased NOx emission by 4.1%
compared to biodiesel fuel without additive. Kalam et al. [157]
investigated the comprehensive study on the effect of NPAA additives
added in biodiesel fuel blends on performance and emission of an
indirect injection, naturally aspirated, four stroke, four cylinder and
water cooled diesel engine. They reported that the addition of 1%

NPAA additives with B20 fuel, the NOx emission was reduced by 23%
and also HC emission was reduced by 15% compared to biodiesel
without additives. Palash et al. [161] studied the effect of jatropha
biodiesel fuel with N,N′-diphenyl-1,4-phenylenediamine (DPPD) on
the engine performance and emission of a compression ignition diesel
engine at different engine speeds and they found that the NOx

decreased slightly compared to the Jatropha biodiesel fuel (B10)
without additives.

Complete combustion inside the combustion chamber helps in
increasing CO2 (carbon dioxide) emission rapidly. CO2 emission is
the main culprit causing the greenhouse effect. A few researchers
reported lower CO2 emission for a diesel engine fueled with biodiesel
than diesel fuel [22,171,172]. Swaminathan et al. [173] reported that
CO2 emission with the use of diethylene glycol dimethyl additive with
pongamia methyl reduced by 2–8% compared to biodiesel without
additive. On the other hand, some authors observed that CO2 emission
for a diesel engine fueled with biodiesel is higher than diesel fuel [174–
176]. Rao et al. [177] found a higher CO2 emission with rice bran oil
biodiesel. They noticed that when a small amount of ethanol was added
to biodiesel, a further increase of CO2 emission was observed because
of the presence of oxygen in ethanol molecules. Availability of oxygen
in biodiesel and relatively lower amount of carbon is the reason
affecting the concentration CO2 emission [178].

CO emission is produced by the incomplete oxidation of carbon-
containing fuel. The more oxygen in the content is, the less CO
emission is due to complete combustion [179–181]. CO emission was
also affected by the feedstock of biodiesel and it decreased with the
increase of chain length [182,183]. The increase of cetane number of
biodiesel will lead to engine load and engine speed decreased CO
emission [131,152,180]. The use of different additives may also
decrease CO emission of biodiesel. Ganesh et al. [131] studied nano-
fuel additives [Magnalium (Al-Mg) and cobalt oxide (Co3O4)] on the
performance and emission characteristics of Jatropha biodiesel (B100)
in a single cylinder, air cooled, direct injection diesel engine and
obtained CO emission decreased by 50% compared to biodiesel fuel
without additives. Sivalakshmi and Balusamy [10] evaluated the effect
of diethyl ether with 5% as an additives with neem oil biodiesel on the
performance and emission. The reduction in CO emission was 25%
when the engine was running at full load compared to biodiesel fuel
(B5) without additives. Kalam et al. [157] tested palm biodiesel and 1%
NPAA additives to control NOx and CO while improving the efficiency
in diesel engines. They found that CO emission decreased by 50%
compared to biodiesel fuel (B20) without additives.

HC emission which is the product of unburned fuel, depends on the
compositions and combustion characteristics of the fuels used. If the
combustion is improved and completed, then HC emission decreased

Table 7
Average composition (%) of fatty acids for different feedstocks.

Feedstock Palmitic Stearic Palmitoleic Oleic Linoleic Linolenic Arachidic Refs.

Tallow 23.3 19.4 – 42.4 2.9 0.9 – [143]
Scum 42.139 15.7632 – 19.2093 0.4822 0.2509 – [144]
Micro-algal 12–1 1–2 55–7 58–60 4–20 14–30 – [145]
Mahua 16–28.2 14–25.1 – 41–51 8.9–17.9 – 0–3.3 [105,111,112,146]
Rubber seed 10.2 8.7 – 24.6 39.6 16.3 – [147]
Sunflower 4.9–6.8 2.3–3.26 – 16.93–32.6 59.4–73.73 0 – [118,147]
Rapeseed 3.49–5.2 0.85–1.4 – 64.4–66 18.9–22.3 5.6–8.23 1.9 [118,147]
Cotton seed 11.67 0.89 – 13.27 57.51 0 – [147]
Soybean 11.7–11.75 3.15–3.97 – 21.27–23.26 53.7–55.53 6.31–8.12 1.23 [118,147]
Jatropha 13.23–16 5.40–7 0.85 41.62–49.39 33–36.99 0.22 > 0.80 0.2 [148–150]
Honge 10.5 5.56 – 49.39 20.37 3.66 1.36 [149,150]
Karanja 3.7–11.65 2.4–8.9 – 44.5–71.3 10.8–18.3 – [114,116]
Peanut 17.2 2.7 – 40.5 36.6 0.5 0.9 [118]
Corn 11.4 1.3 – 27.1 60.2 – – [118]
Palm 49.8 2.9 – 38.6 6.6 – – [118]
Palm Kernel 11.5 1.4 – 15.9 1.8 – – [118]
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and vice versa. When the engine was fueled with biodiesel instead of
diesel, HC emission decreased due to some amount of oxygen within its
own structure [22,112,120,179,184–187]. Besides, higher cetane
number also reduces HC emission due to the reduction of burning
delay [179–182]. Higher oxygen content in biodiesel fuel leads to
complete combustion, then HC emission decreases. Kalam et al. [157]
investigated palm biodiesel and 1%NPAA additives and they reported
that HC emission decreased by 15% compared to biodiesel fuel (B20)
without additive. Kannan et al. [160] investigated the effect of ferric
chloride (FeCl3) as metal based additive in the engine fueled with waste
cooking palm oil biodiesel. The authors concluded that the use of FeCl3
decreased HC emission by 26.6% compared to biodiesel fuel without
additive. Ganesh et al. [188] studied the addition nano-fuel additives
Magnalium (Al-Mg) and cobalt oxide (Co3O4) and the results showed
that they gave mean reductions in HC emission by 66% and 33%
compared to biodiesel without additives. The experiment was carried
out on a one cylinder, four strokes, water cooled, indirect injection
diesel engine which used jatropha oil biodiesel.

Smoke which is the main reason to produce smoke opacity, is
formed due to the incomplete combustion of the fuel. Oxygenates has a
strong effect on the reduction of smoke when adding to diesel fuel. The
presence of excess oxygen content in biodiesel led to better combustion
and resulted in less smoke formation. In addition, smoke emission is
affected by higher density and higher viscosity of biodiesel fuel which
leads to the increase in smoke opacity [189]. Kannan et al. [160]
studied the effect of waste cooking palm oil biodiesel with ferric
chloride(FeCl3) as metal based additive on the engine performance
and emissions. The authors revealed that the smoke emission de-
creased by 6.9% compared to biodiesel fuel without additive.
Sivalakshmi and Balusamy [10] indicated that the smoke opacity
reduced with the use of diethyl ether with 5% as an additives with
neem oil biodiesel (B5). They found that smoke opacity decreased by
10% compared to biodiesel fuel (B5) without additive. Table 8 de-
scribes the effect of additives on engine performance parameters and
emissions.

Based on the summary in Table 8, the following conclusions can be
drawn:

Adding oxygenated additives like ethanol, diethyl ether, isobutanol
in biodiesel blend increases the oxygen content of the blend as well as
reduces the density, viscosity and least improvement of flash point. In
most of the cases, oxygenated additive blended biodiesel increased
higher brake thermal efficiency by up to 9.1% except for 15% of DEE in
a neem biodiesel-fueled engine and decreased the brake specific fuel
consumption compared to biodiesel without additives. Brake specific
fuel consumption depends on the ethanol content present in the blend.
If the ethanol content of the blend increases, the brake specific fuel
consumption also increases. Generally adding oxygenated additives to
biodiesel fuels reduced exhaust emissions such as CO, HC and smoke,
about 4.6–38%, 38%, 6.7–19% respectively, especially isobutanol,
ethanol and diethyl ether were more effective to reduce emissions
due to excess oxygen content. However, NOX emission reduced
significantly by up 80% with 2% DEE in fish biodiesel-fueled engine
but the most of cases, NOx emission increased because of more oxygen
content present in the biodiesel.

Metal based additives like Mg, Mn, Ni, Co, Mo, etc. reduced the
pour point, viscosity and increased the flash point of biodiesel fuels.
Adding metal based additives in biodiesel fuels decreases significantly
the brake specific fuel consumption by about 2–18.4% as well as
increases the brake thermal efficiency 1–3.1% due to their catalyst
effect compared to biodiesel without additives. Fuel born catalyst and
cerium oxide additive with biodiesel are more effective for increasing
brake thermal efficiency compared to biodiesel without additives.
Exhaust gas emissions also improved with the addition of metallic
additives. Exhaust emissions such as NOX, CO, HC and smoke, about
19–45%, 50%, 26.6–76%, 6.9% respectively, except for 2% of ferric
chloride in a paml biodiesel-fueled engine.

Adding antioxidant additives like NPAA, BHA, BHT, L-ascorbic
acid, EHN, TBHQ in biodiesel blend increased flash point, cetane
number and oxidation stability of biodiesel but reduced calorific value
of biodiesel. Antioxidant additives affect BTE, BSFC and emissions with
different degrees. With BHA, BHT antioxidants, brake thermal effi-
ciency increased slightly but with L-ascorbic acid, brake thermal
efficiency reduced slightly compared to neat biodiesel. With L-ascorbic
acid and a-tocopherol, BSFC increased slightly whereas other antiox-
idants reduced slightly compared to neat biodiesel without additives.
The antioxidant additives are quite effective in controlling the NOx

formation of biodiesel fuels. HC and CO emissions of all antioxidant-
added biodiesel fuels were higher than those of biodiesel without
antioxidant. HC and CO emissions of NPAA and L-ascorbic acid
blended biodiesel fuel were lower than biodiesel without additives.

5.1.2. Exhaust gas recirculation (EGR)
Today, exhaust gas recirculation (EGR) is a NOx emissions reduc-

tion technique used with both diesel and biodiesel [206–213]. Many
researchers [212,214,215] reported that EGR is a highly potential NOx

mitigation technology. EGR works by recirculating a portion of an
exhaust gas of engine back to the engine cylinders. This dilutes the O2

in the incoming air stream and provides gases inert to combustion to
act as absorbents of combustion heat to reduce peak in-cylinder
temperatures. Hence, the formation of NOx can be reduced drastically
[216] which is the main application of EGR technology. Two actions of
its mechanisms are dilution (due to increased non-combustible mass),
and chemical (due to increasing molecular complexity lead to increased
dissociation during reaction) [214,217]. In naturally aspirated engines,
exhaust gas comes straight forward into the cylinder because the
exhaust tailpipe back pressure is generally higher compared to the
intake pressure. A flow passage is established between the exhaust and
the intake manifolds and is regulated by a throttling valve, as shown in
Fig. 6.

If the exhaust gas is recycled to the intake manifold directly, the
operation is called hot EGR. In modern diesel engines, the EGR gas is
cooled with a heat exchanger to allow the introduction of a greater
mass of recirculated gas, the operation is called cooled EGR [218]. The
NOx emission reduced the chronological trends by raising the EGR rate
[219,220]. EGR ratio was defined with the following Eq. (1) which has
been used by several researchers [181,221,222].

EGR
m

m m
(%mass) =

̇
̇ + ̇

× 100%EGR

EGR AIR (1)

where EGR (%mass) is the mass percent of the recirculated exhaust gas
ṁEGR in total intake mixture and ṁAIR is the mass of intake air in total
intake mixture.

Although using EGR in a CI engine is an effective technology to
reduce the NOx emission, there are some disadvantages such as
significantly increasing smoke, HC, CO, fuel consumption and reducing
thermal efficiency unless it is suitably optimized [222]. Saleh et al.
[221] found that the BSFC increased by 9% and HC, CO emission
slightly increased and NOx emission reduced by 36% with optimum
EGR rate 12% at full load, 1600 rpm compared to biodiesel without
EGR. Kass et al. [223] studied the effect of EGR on the engine

Fig. 6. EGR technology.
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performance and emissions for a diesel engine operated with soybean
biodiesel (SB) fuel. They revealed that the use of 27% EGR was more
effective and achieved a reduction of NOx emission of about 87.7% with
B100 at 68 Nm load. Using EGR technology on a biodiesel-fueled
engine, the BSFC may increase because of altering the air–fuel ratio,
the dilution effect, reducing the oxygen content, and the falling burn
rate, therefore making achieving stable combustion more difficult and
so on [220,221]. Farther, this technology increases temperature of the
mixture of EGR and fresh inlet air, hence leading to a damnatory effect
on the volumetric efficiency at the high engine load because of reducing
the cylinder-trapped mass [209]. Generally, in biodiesel-fueled en-
gines, the use of EGR results in increasing smoke, HC, CO and reducing
NOx emission compared to cases without EGR application [222]. At
peak loads, dissociation of CO2 to CO can also contribute to increased
CO emission while the variation in HC emission was not significant
with increasing EGR levels in the biodiesel-fueled engine [224]. The
issue is caused by the oxygen content in bio-diesel compensating for
oxygen deficiency and facilitating complete combustion. The increasing
EGR rate leads to increasing PM or soot emission because of the lower
oxygen concentration [216,225]. However, many engine researchers
and manufacturers reported that although using EGR in a diesel engine
increases PM and reduces NOx, it is still widely used due to its
simplicity, lower required volume and cost compared to the others.
In Table 9, the emissions and performance data shows a considerable
spread as there are variations in the EGR condition, different feedstock
sources, and engine operating conditions.

From Table 9, the following conclusions are reached:
When increasing EGR rates reduces NOx and increases PM or soot

emissions for biodiesel combustion, it increases the BSFC by about
4.25–9%. At 10–20% EGR, it decreases the NOx emission by up to 87%
with reducing the engine efficiency of about 0.6–9.16% when fueled
with RB100, RB50 and KB40 compared to the biodiesel combustion
without EGR.

When engines operated 10–20% EGR with biodiesel fuels such as
rapeseed, sunflower, jatropha, karanja, rice bran and jojoba biodiesel,
exhaust emissions raise significantly, namely CO about 6.2–15%, HC
and smoke about more than 100% but they are still below the
acceptable stage.

When using EGR technology at high EGR rates, more than 25%,
NOx reduces to a great extent but increases other emissions on a large
scale compared to the biodiesel combustion without EGR.

5.1.3. Water injection (WI)
An important strategy to control the NOx emission from a CI engine

is injecting water into the combustion chamber, directly or through the
intake manifold. One important advantage using WI (water injection)
is the enhanced possibility of reducing the NOx over the entire engine
load range with a lesser negative effect on the PM emission [230].
Water decreases the local adiabatic flame temperature by absorbing its
heat of evaporation [231] which leads to reduced NOx emission. WI can
be achieved in two ways: Inlet water injection (IWI) or water fumiga-
tion and direct water injection (DWI) into the combustion chamber

[230,232]. Fumigation is the technique of injecting water into the
intake manifold upstream of the intake valve. Although WI technology
decreased NOx, there are some disadvantages such as it significantly
increases the CO and HC emissions as well as BSFC at low load and low
combustion temperature engine mode.

Tauzia et al. [230] studied the effects of WI on ignition delay, rate of
heat release and emissions of an automotive direct injection diesel
engine. The authors found that higher water flow rate contributes to
longer ignition delay, higher peak heat release, and lower NOx emission
but higher production of CO and HC emissions. Tesfa et al. [233]
investigated an experiment into the effects of WI on engine perfor-
mance, combustion and emission characteristics of a 4-cylinder, 4-
stroke, turbocharged direct injection CI engine fueled with RB. They
reported that the water injection at a rate of 3 kg/h results in the
reduction of NOx emission by about 50% without causing any
significant change in the specific fuel consumption, little effect on the
in-cylinder pressure and heat release rate of the CI engine under
different operating conditions and increased CO emission of about 40%
compared to fuel-based combustion.

Using WI technology decreased NOx but it increased CO, HC and
BSFC, so it's better to combine WI technology with other technologies.

5.1.4. Emulsion technology (ET)
Fuel emulsification is the technique used to introduce water into

the combustion chamber. The main aim of using emulsion technology
is to enhance the fuel combustion efficiency and to reduce the
emission of NOx, PM, smoke, and other pollutants [234,235]. An
emulsion is a mixture of two immiscible fluids. For example, oil
phased emulsion helps the water droplets -in the dispersed phase - to
be uniformly distributed throughout the fuel oil -in the continuous
phase by mechanical, electronic, magnetic, or ultrasonic forces with
the help of a suitable surfactant. An emulsion takes on the character-
istics of the continuous phase. Hence, oil phased emulsions exhibit
characteristics of fuel oil, not water. Two types emulsion are two-
phase emulsion and three-phase emulsion. In which, two – phase
emulsions are mainly two types, that is water-in-Oil (W/O) emulsions
and oil-in-water (O/W) emulsions, and three – phase emulsions are
also two types: oil-in-water-in-oil (O/W/O) and water-in-oil-inwater
(W/O/W) emulsions [236]. Emulsions are inherently unstable. A
schematic diagram of the W/O and O/W/O emulsion structures is
shown in Fig. 7.

Over time they will separate into the stable states of the dispersed
and continuous phase materials. To maintain the composition of an
emulsion, surface active agents, or “surfactants”, are incorporated into
the production of an oil phased emulsion. In an oil phased emulsion,
these surfactant agents encase the droplets of water distributed
throughout the continuous oil phase and prevent the water droplets
from coming together and coalescing. The addition of water results in a
decrease in temperature inside the combustion chamber due to the
evaporation, dissociation of water during the combustion and an
increase in the local specific heat capacity [237]. The emulsion
technology can be applied to bind various base fuels with water,
creating a wide array of environmentally friendly products that reduce
both NOx and PM pollution simultaneously which are created during
the combustion process with or without penalty to fuel economy. On
the other hand, the mass of the added water has been shown to increase
the momentum of the fuel jet, thereby allowing improved atomization
and air entrainment, which subsequently leads to premixed combus-
tion and lower PM formation [238–240]. Water in the biodiesel
emulsion increases the kinematic viscosity and reduces the heating
value of the fuel [241]. Biodiesel emulsions also reduce PM soot
fractions compared to B100 and diesel fuels [223]. Additionally, OH
radicals may also be formed by the dissociation of water to further
lower NOx and PM emissions [242]. However, this technology in-
creases HC and CO emissions with increasing water content in
emulsified fuel [243].

Fig. 7. Physical structures of two-phase and three-phase emulsion [235].
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Basha et al. [244] investigated the effect of jatropha emulsified
biodiesel (83% jatropha biodiesel with 15% water and 2% surfactant)
on exhaust emissions and the performance of diesel engines. They
reported that BTE increased by 2.4%, BSFC decreased by 2.7% and
NOx decreased by 22.9%, PM decreased by 14.9% while HC increased
by 45.8% and CO increased little compared to biodiesel without
emulsion. Generally, the effect of emulsion on the performance is not
clear, a several researchers [245,246] found increased engine power;
others [223,247] observed a reduction. In Table 10, the emissions and
performance data shows as using emulsion technology for biodiesel
fuel.

From Table 10, the following conclusions are reached:
Using ET with 10–20% H2O in biodiesel fuel shows the penalties

for BSFC and BTE. For example, BSFC increases by about 4.95–15%
and BTE reduces by up 14.2% except for emulsified JB and TPB but
NOx can reduce by about up 41% in various engine conditions.
Emulsified biodiesel mostly increases CO and HC emissions by about
15.9–94.8%, 45.8–56% respectively but remains at the same or a lower
level when compared to diesel combustion without emulsion and
reduces smoke emissions by about 7.2–14.9%.

5.1.5. Fuel injection strategies modification

5.1.5.1. Injection timing retardation (ITR). Injection timing which is
an important parameter plays a significant role in determining both
engine performance and pollutant emissions [254]. The combustion
process is retarded due to the retardation of the injection timing. The
concentration level of thermal NOx mainly depends on the combustion
peak temperature; the NOx level will be lowered when the peak
temperature remains low. However, using ITR meets some
disadvantages such as the increased HC emission, the increased
smoke emission, the increased fuel consumption, the decreased BTE
and the reduced power [222].

Many researchers [212,255] reported that the control retarding the
injection timing not only affects exhaust emissions but also affects the
engine's performance. Ganapathy et al. [256] used a single cylinder DI
diesel engine fueled with jatropha biodiesel to observe the effect of ITR
of about 5° CA from the original 15° CA BTDC at 15 Nm and 1800 rpm,
on the engine performance and emissions. They reported that this
technique reduced the engine performance due to the lower calorific
value. Although it reduced NOx emission due to the shorter ignition
delay which reduced the air– fuel mixing time, hence leading to the
slowing of the burning rate in turn slowly raising the combustion
temperature, other emissions such as HC and smoke were increased
marginally because of the poor initial phase of combustion. ITR
reduced soot oxidation rates which increased soot or PM emission
[257,258]. Table 11 reveals the emission and performance data when
using ITR for biodiesel fuel.

5.1.5.2. Injection pressure. The injection pressure in diesel engines
plays an important role for emission control strategies and
performance. Increasing the injection pressure causes an earlier start
of combustion due to the improved atomization which results in better
air fuel mixing. Many researchers [267–271] have studied the effects of
fuel injection pressure on diesel engine performance and emissions.
They reported that increased injection pressure gave better results for
BSFC, BTE, BSEC. CO, smoke and HC decreased but slight increased
NOx emission compared to the original. Canakci et al. [272] tested the
effects of injection pressure on the performance and emission
characteristics of diesel engine fueled with methanol blended diesel
fuel. The authors chose three different injection pressures 180, 200,
220 bar to investigate its effect on four different loads 5, 10, 15 and 20
Nm at constant engine speed of 2200 rpm. It was found that increasing
injection pressure increased NOx and CO2 while smoke, CO and HCT
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decreased and performance parameters like BSFC, BSEC and BTE were
best at original injection pressure of 200 bar and became poor on either
increased or decreased injection pressure. Jindal et al. [273]
investigated the effect of injection pressure on the performance and
emission characteristics of diesel engine fueled with jatropha methyl
ester diesel fuel. They chose three injection pressures 150, 200, 250 bar
for their study. The results showed that at injection pressure of 250 bar,
BTE was improved by 8.9%, with a reduced HC and smoke compared to
the base injection pressure. Puhan et al. [274] studied the effect of
injection pressure on high linolenic linseed oil methyl ester fueled
diesel engine. At higher injection pressure of 240 bar, BTE and BSFC is
improved accompanied with decreased CO, smoke and HC but slight
increased NOx emission. Table 12 shows the effect of injection pressure
on the performance and emission characteristics of diesel engine fueled
with biodiesel fuel.

From Tables 11 and 12, the following conclusions are reached:
Using ITR technology in a biodiesel engine deteriorates fuel

consumption and performance characteristics, namely, BSFC increases
by 16.6% and BTE reduces by up 4.1% except for ITR technology with
KB, MB and P20.

In most biodiesel engines except KB and MB, ITR technology
increases the CO, HC and smoke emissions by about 11.39–35.11%,
5.5–38%, 17–66% respectively and the NOx emission reduces by about
8.2–37.89% compared to the original IT.

In general, increasing injection pressure results in increased
thermal efficiency 1.1–8.9% and reduced fuel consumption by about
10–17.26%. While CO, HC and smoke emissions reduce by about
2.51–39%, 0.3–66%, 0.3–27% respectively, NOx emission increases
significantly by about 4.5–28.6% compared to the original IP.

Therefore finding the set optimal parameters for any engine and
fuel based on a balance between performance and emissions plays a
vital role. Hence the combination of one or more strategies may help to
strike a balance between reducing emissions and improving the
performance of the engine. These studies also provide facts on major
reductions in pollutions particularly with respect to NOx and PM
reduction and hence provide the flexibility in controlling the PM-NOx

trade-off for future vehicles to meet more and more stringent emission
norms.

5.1.6. Simultaneous technology (ST)
Many researchers believed that using simultaneous technology

will give better efficiency on the performance and reduction in
exhaust emissions from a biodiesel-fueled CI diesel engine than
using single technology. Some STs have been applied to achieve
optimum results as emulsion with EGR [223], additives with EGR
[281–283], EGR with ITR [212,225]. Qi et al. [225] studied the
combined effect of EGR and ITR technologies on the combustion and
emission characteristics of a split injection strategy DI-diesel engine
fueled with soybean biodiesel. They authors reported that a higher
EGR rate with ITR was an effective technology to reduce NOx

emission without the penalties of soot emission and BSFC.
Saravanan et al. [284] investigated experiment the combined effect
of 10% EGR with 220– 230 bar injection pressure on the combustion
and emission characteristics of DI-diesel engine fueled with RBB.
The authors found that the most effective result for the reduction of
NOx emission with small penalties for smoke density and BTE at no
load and partial load while injection timing is a more influential
factor at full load. Table 13 shows the effect of using simultaneous
technology on the performance and emission characteristics of diesel
engine fueled with biodiesel fuel.

From Table 13, the following conclusions are reached:
This combined technology can adversely affects performance char-

acteristics of the engine, BSFC increases by 3% and BTE reduces by up
1.43% except for ST with crude rice bran biodiesel fuel. T
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Using simultaneous technology strongly reduced NOx emission by
up 95% with 2% DEE, and 10% DME and EHN additives in FOB, KB,
JB and 15–20% EGR at no load, maximum load and 80% load
respectively but increased CO emission by about 0.7–69% and more
than 100% with HC, smoke emissions.

5.1.7. Combustion chamber geometry modification
Another way to overcome the disadvantages of biodiesel fueled DI

diesel engine is appropriate engine modification without compromising
the combustion performance and emission characteristics. Among the
various engine modifications, changes in combustion chambers, injec-
tion timing, and injection pressure play a vital role. When the engine is
run by biodiesel, the need for modification in the combustion chamber
has to be taken into account to evaluate its performance and emissions.
The improved air motion in the combustion chamber due to its
geometry facilitates the mixture formation of biodiesel with air, hence
increasing the brake thermal efficiency and lowering the specific fuel
consumption. Novel swirling grooves were provided in the piston top
face to enhance the biodiesel air mixing by improving the swirling
motion. Isaac et al. [285] studied the combined effect of injection
pressure and turbulence inducer piston (TIP) on the performance, and
emission characteristics of biodiesel from Adelfa as a blend of 20%
diesel (A20) which could be used in the diesel engine with turbulence
inducer piston operated at 21°BTDC and 220 bar pressure at a constant
speed of 1500 rpm. The schematic diagram of TIP is shown in Fig. 8.

The authors reported that considerable improvement in the emis-
sion characteristics like HC, CO, smoke with increased injection
pressure due to the presence of oxygen in the blend and improvement

in fuel air mixing was facilitated by turbulence inducer grooves on the
crown of the piston. NOx emission increased due to the improved
combustion rate and combustion chamber temperature. The brake
specific energy consumption dropped and the brake thermal efficiency
showed a swifter profile for TIP with A20 due to better air enhance-
ment and fuel air mixing which led to improved combustion.

Jaichandar et al. [37] investigated a blend of 20% Pongamia Oil
Methyl Ester (POME) with standard diesel as fuel and three types of
combustion chambers namely Hemispherical combustion chamber
(HCC), Toroidal combustion chamber (TCC) and Shallow depth
combustion chamber (SCC) without altering the compression ratio of
the engine. Fig. 9 shows the shapes of three combustion chamber
geometries. They found that the brake thermal efficiency for toroidal
combustion chamber is higher than for the other two types of
combustion chambers. PM, CO and HC reduced significantly for
toroidal combustion chamber compared to the other two. However
NOx were slightly higher for toroidal combustion chamber.

5.2. Low-temperature combustion (LTC)

A promising new technique which covers a number of advanced
combustion strategies, includes HCCI and PCCI. The entire fuel and air
charge is premixed prior to the start of combustion in LTC advanced
combustion strategies. In the LTC mode, the combustion is controlled
to occur in the pre-defined relative air–fuel ratio and temperature
zones which limit the formation of NOx, PM, and soot emissions
simultaneously. Fig. 10 shows that NOx emissions are not formed in the
rich mixture zone if the flame temperature is under 2200 K, while soot

Table 13
Review of emissions and performance analysis using simultaneous technology for biodiesel fuels.

Engine Specification Condition technology Fuel Performance Emission Refs

BSFC BTE NOx CO HC Smoke

Kirloskar - AVI, 1 C,
4 S, WC, DI

2% DEE (A) + 15% EGR at no load condition FOB ↑ No change ↓75.5% ↓25% ↓68.8% – [192]
2% DEE (A) + 15% EGR at maximum load condition ↑ No change ↓94.8% ↓52% ↓90.2% –

Twin cylinder, 4 S,
WC, DI

10% DMC + 15% EGR at 80% load KB40 ↑0.35% ↓1.43% ↓22.01% ↑0.69% ↑2.5% ↑1.54% [228]

1 C, 4 S, WC, DI (10 wt% H2O + 3.5% surfactant + 86.5% SB) + 27% EGR,
68 N m load

SB ↑3% – ↓91% ↑69.9% ↑↑ ↑↑ [228]

DEUTZ FL1 906,
1 C, 4 S, WC, DI

Increasing the EGR rate from 38% to 43% + retardation of
injection at 4° CA from original IT

SB ↑ – ↓50% – – ↓ slightly at
LL

[225]

Kirloskar 1 C, 4 S,
AC, DI

Increasing the EGR rate with three levels 0%, 10%, 15% +
retardation of injection at 2.5° CA from original IT +
Increasing injection pressure rate with three levels 210,
230,250 bar

Crude rice bran
oil methyl ester

– ↑3.6% ↓14% – – ↑4% [284]

Note: A = Additives, results compared to biodiesel without ST.

Fig. 8. Turbulence inducer piston [235]. (a) Schematic representation. (b) Fabricated turbulence inducer piston.
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is not formed in the lean mixture zone under 1800 K. Compared to the
conventional diesel combustion, LTC strategies generally increased the
pre-combustion mixing, which helps to avoid locally rich regions and
reduces the peak combustion temperature, thus leading to the reduc-
tion of NOx and soot simultaneously. Moreover, the LTC modes of
combustion [138] also use high EGR rates (up to 50%), high injection
pressures, multiple fuel injection, and late main injection even after
TDC.

Recently, a new invention of LTC, Reactivity Controlled
Compression Ignition (RCCI) has been reported by several authors
[287–289]. This technology has the potential to solve some of the
disadvantages of HCCI and PCCI. With the LTC mode, the ignition
delay increases, so increasing the premixed combustion phase and
decreasing the diffusion flame combustion phase in which the overall
in-cylinder temperature is reduced substantially, resulting in reducing
NOx formation. At the same time, PM is reduced due to the dominance
of homogeneous lean charge in the combustion chamber, higher
injection pressure facilitates the atomization of the fuel and higher
oxygen content of biodiesel ensures the complete oxidation of soot. HC
and CO emissions in LTC modes are affected by several factors like
injection pressure and timing [290], operating load, injection style
[291], intake air temperature [292], in-cylinder temperature and
combustion phasing [293], etc. In the premixed mode, both the early
and late injection increased higher HC and CO than conventional
combustion of biodiesel. Besides, HC was increased by extended
ignition delay of LTC mode which created over-lean regions and
increased the quantity of injected fuel species outside lean flammability
limits. It means that, in spite of reducing HC and CO at the premixed
LTC than diesel fuel, LTC mode releases higher HC and CO than
conventional combustion of biodiesel. In fact, this is one of the
principle disadvantages of applying HCCI, PCCI or RCCI.

Soloiu et al. [294] investigated the use of port fuel injection with n-
butanol in a 100% peanut biodiesel-fueled engine to attain an LTC/
PCCI mode at idling speeds and loads with 1–3 bar IMEP and reported
that by controlling the combustion phases and modifying the classical
NOx-soot trade-off, soot/PM and NOx reduced about 98% and 74%

respectively, at 3 bar IMEP compared to diesel without LTC mode but
HC and CO emissions increased greatly due to the incomplete
combustion during the premixed burn phase. Besides HC and CO are
also affected by other factors such as the lack of intake manifold
heating, crude manifold injection strategy, which consequently pro-
duces fuel pooling in the intake and allows the passage of some butanol
directly from the intake into the exhaust manifold. Using a high EGR
rate like an LTC technology, reducing the combustion temperature due
to the high heat and energy absorption capacity of the introduced
diluted exhaust gas [295] lead to reduced NOx missions. However,
Karra et al. [296] notified that PM emission increases at first with
increasing EGR rate and then reduces at high levels of EGR rate.
Espadafor et al. [219] also examined a diesel engine fueled with Colza
biodiesel and its blends, applying the LTC mode of combustion as
HCCI gained by high swirl ratio, EGR and late injection. The authors
reported that NOx and PM emissions decrease with increasing EGR
rates and biodiesel blends; however, increased HC and CO emissions
happened for all tested fuels. They explained that exhaust gas
temperature reduces with increasing percentages of EGR, which results
in a reduction in the oxidation rate for HC and CO. LTC mode can also
be affected by fuel properties. Higher surface tension, lower volatility
and narrow boiling range, which increase fuel wall impingement, are
worse biodiesel mixture formation characteristics which increase the
scale of CO and HC emissions due to incomplete oxidation. Therefore,
the addition of oxygenated ethanol with biodiesel blends was not
proved fully to be a better way to solve the problem of higher CO and
HC emissions with LTC due to its incomplete combustion, because of
having higher latent vaporization heat which leads to a lower combus-
tion temperature [297,298]. Table 14 shows the effect of using LTC on
emissions and performance for biodiesel fuels.

Based on the summary in the Table 14, the following conclusions
are drawn:

Generally LTC affects slightly the performance, in which BSFC
increases by about 3–5%, BTE reduces by about 5.5% but it reduces
NOx and PM emissions simultaneously with a very high rate by about
66–93.5%. However it also shows a little penalty to CO and HC
emissions as they increase by 11% and 43.17%, respectively because of
slight incomplete combustions.

HCCI combustion mode is the extremely effective method of
reducing PM emission due to the fuel impinging on the cylinder and
piston walls. The PM emission decreases due to the improved
atomization, and better vaporization and homogenization when the
injection pressure increases.

RCCI combustion mode has not been tested with biodiesel as a
higher reactive fuel yet. Different fuels should be tested to cover a wide
range of reactivity.

6. Summary and future of the combustion and emissions of
the diesel engine fueled with biodiesel

According to the above analysis, low-temperature HCCI or PCCI
combustion modes are promising solutions for low-emission biodiesel

Fig. 9. Schematic of different open combustion chambers [37].

Fig. 10. LTC model for PCCI, HCCI and soot, NOx formation zones [286].
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engines compared to the others thanks to the reduction rate of NOx and
PM emissions with little penalty in terms of engine performance. The
expense of using additives increases while the emissions are not
decreased; ITR is easy to modify while BTE is reduced and smoke
strongly increases; using ET and WI in a long period of time, the engine
components tend to corrosion. Using EGR independently reduces
significantly NOx emissions and energy efficiency, operational stability
is reduced, and PM generation of the engine is increased. High
injection pressure with in-cylinder swirl formation requires modifying
engine. In this case, LTC modes appear cleanly as the extremely
effective modes to ensure the engine performance with the ultra-low
emissions. However, these modes have some drawbacks which can be
solved in the near future. Besides using after treatment technologies to
reduce HC and CO emissions, different technologies can be used such
as higher injection pressure, intake pressure or multiple injection
methods during biodiesel combustion for both PCCI and HCCI. The
fuel consumption of LTC modes can be reduced by proper optimization
of the combustion conditions and fuel chemistry. Fuel reactivity
stratification method used in RCCI combustion has opened an
approach to reduce BSFC through LTC modes as well as increasing
the operating load with high thermal efficiency. Regardless of any fuel-
using combustion, NOx is reduced better in premixed LTC than in
HCCI. However, RCCI is the most efficient. This study suggests that the
future studies should deeply investigate the RCCI combustion system
using different biodiesels. Besides the stringent emission standards are
more and more increased, the LTC performance is improved continu-
ously, too. Therefore LTC is the most optimal technology of the
combustion and emissions of the diesel engine fueled with biodiesel
in the future.

7. Conclusion

From this study, the use of biodiesel-fueled CI engines is inevitable
due to the increasing demand of human and environmental pollution
problems. Many authors reported that using biodiesel in diesel engines
significantly reduce PM, HC, CO emissions. NOx emission increases
while the brake power and brake thermal efficiency are slightly
lowered, but the BSFC increases more than diesel fuel because that is
unavoidable. So the selection of a technology which increases the
engine performance and reduces emissions of the diesel engine fueled
with biodiesel, plays an extremely important role. The characteristics of
the performance and emission of a compression ignition engine fueled
with different biodiesel blended with different technologies were
investigated and compared with those fueled with neat biodiesel and
blends. According to the analysis of the above literature the following
summery can be drawn:

(1) Metal based and oxygenated additives increased the brake thermal
efficiency and decrease the brake specific fuel consumption,
reduced exhaust emissions such as CO, HC and smoke, but NOX

emission increased significantly. Antioxidant additives in biodiesel
have different effects on BTE, BSFC and emissions. Antioxidant
additives in biodiesel can reduce the prompt NOx (by up to 43.5%)
with increasing CO, HC emissions. To apply this technology
commercially, further studies are needed to determine the effects
of additives on unregulated emissions, SO3 and SO2 generation,
acid dew point, corrosive properties of engine and cost.

(2) EGR is the simple technology which is widely used due to lower
cost and lower volume requirements. EGR can increase BSFC and
reduces the engine efficiency slightly but it significantly reduces the
NOx emission compared to biodiesel combustion. To apply this
technology, further studies need to determine then optimal EGR
rate for different biodiesel on base characteristics of performance
and emissions.

(3) WI and ET technologies are applied less for biodiesel-fueled CI
engines. These technologies can reduce NOx and PM simulta-

neously but also increase the CO and HC emissions with some
penalties of BSFC and BTE. Moreover, those technologies increase
the corrosive properties of the engine components.

(4) Fuel injection strategy modification was also a method that gained
a lot of attention. Using ITR technology in a biodiesel-fueled
engine reduces the NOx emission, deteriorates fuel consumption,
performance characteristics, as well as increases the CO, HC and
smoke emissions compared to the original IT. Increasing the
injection pressure increases the thermal efficiency, better fuel
consumption while less CO, HC and smoke emissions, however
with higher NOx. Therefore, the further investigations need to find
the set optimal parameters for any engine and fuel.

(5) Simultaneous technologies such as additives or emulsion, with
EGR on a biodiesel-fueled engine showed obviously effects on the
performance and NOx emission but increases CO, HC and smoke
emissions significantly.

(6) The LTC mode of combustion in biodiesel-fueled engines achieved
extremely good results in reducing NOx and PM emissions
simultaneously by up to about 95% and 98%, respectively, with
little penalty on the engine performance. However, HC and CO
emissions increased greatly but this can be minimized by using
post-combustion equipment.

(7) Modifying combustion chamber geometry improved the emission
characteristics like HC, CO, smoke, brake thermal efficiency.
However, NOx emission increased due to the improved combustion
rate and combustion chamber temperature. Hence, further inves-
tigations need to combine a modified combustion chamber geo-
metry with injection strategies.

From this review article, modern LTC technology has many
advantages of modern technology compared to others as the reduction
rate of NOx and PM emissions is very high simultaneously with little
penalty in terms of engine performance and emissions which can be
solved by using many different technologies. This technology is really
promising in biodiesel-fueled engines, in which the RCCI combustion
system can be the future of diesel engine fueled with biodiesel.
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